金卤灯二级拓扑电子镇流器控制策略的研究

  随着科技进步,人类对照明的需求也与时俱进,经历了白炽灯、荧光灯两代照明产品之后,人类开辟了照明史的新纪元,进入了金属卤化物灯的照明时代。较之前两代产品,金卤灯的启动过程更为繁琐,在此过程中需要电子镇流器的参与。所以对镇流器的研究成了光源照明技术发展过程中必不可少的环节。最初研究镇流器主要面临的技术难题是“声谐振”现象。随着研究的深入,可采用低频方波技术能有效的解决这个问题,使电子镇流器应用于金卤灯获得了极其重要的进展。

  在传统的电子镇流器的设计中,往往采用三级电路拓扑,包括率因数校正(PFC)电路、DC/DC电路和DC/AC逆变电路.但是电路级数越多使用的器件越多并且使产品设计愈显复杂。

  因此为了节约设计成本简化电路设计,本文提出一种电子镇流器二级拓扑结构的设计思想。

  镇流器的电路拓扑结构

  1 三级电路拓扑结构

  在电子镇流器的设计中,最常采用的设计电路为传统的三级拓扑,系统结构由功率因数校正(PFC)电路、DC/DC电路和DC/AC电路组成,三部分电路相互独立且各自完成相应的功能。第一级的功率因数校正电路,可选用的拓扑为BOOST型和反激型的功率因数校正电路。

  第二级电路为DC/DC电路,其主要功能是控制灯启动过程中的电流和功率,稳定灯的工作点,这一级电路最常采用的拓扑为BUCK电路。

  第三级电路为DC/AC逆变电路,其主要功能是为灯提供一个交变的工作电流和电压,常用拓扑为半桥和全桥电路.传统的三级电路每一级电路独立执行相应的功能。控制相对简单,系统的可靠性较好。但是,传统的三级低频方波电路存在电路复杂、成本高、效率低等缺点。

  2 二级电路拓扑结构

  近年来两级低频方波电子镇流器得到了很大的发展,主要有两种功能组合方式:

  (1)将功率因数校正环节(PFC)和DC/DC进行合并,合并后的电路既要完成功率因数校正的功能,又需要控制灯的启动过程中的电流,控制较三级电路复杂。

  (2)将DC/DC和逆变电路进行合并,整个电路省去了DC/DC环节,逆变电路进行PWM调制,起到控制灯电流大小和换向的作用.此种方法主要有PFC级+全桥DC/AC级和PFC级+半桥DC/AC级两种,但是,由于半桥双BUCK低频方波变换器开路输出电压低灯信号取样困难控制电路复杂等,所以采用PFC级+全桥DC/AC级电路。

  镇流器各级电路的控制策略

  电子镇流器本身,实际上是一种AC/DC/AC的特种电源。采用二极管整流、电容滤波的整流环节会使输入电流严重畸变[5].特别是大量使用时对电网产生严重的谐波污染且功率因数较低。对于这种使用数量大的中小功率单相电源系统,最理想的方法是在电源内部采取功率因数校正措施,从根本上消除谐波源。通常功率因数校正方法有两种:有源功率因数校正(APFC)和无源功率因数校正(PPFC)。但无源功率因数校正(PPFC)的功率因数不是很高,只能达到0.8~0.9之间,很难接近1,并且电路中电感体积大且重,给电路设计带来一定麻烦。

  而有源功率因数校正(APFC)技术被认为是合适的选择,很多公司也推出了各种成熟的功率因数校正芯片。此次设计我们采用的功率因数校正芯片就是TI公司最近新推出的UCC28019。

声明: 本文由入驻OFweek维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。
侵权投诉

下载OFweek,一手掌握高科技全行业资讯

还不是OFweek会员,马上注册
打开app,查看更多精彩资讯 >
  • 长按识别二维码
  • 进入OFweek阅读全文
长按图片进行保存